tailieunhanh - Corrosion resistance and mechanical properties of tio2 nanotubes epoxy coating on steel spcc jisg 3141

Titanium dioxide nanotubes (TNTs) have been considered the promising nanostructures employed for many practical applications such as biomedical, photonic and optoelectronic devices. Coatings prepared from epoxy-nano-TiO2 nanotubes synthesized by in situ polymerization were found to exhibit excellent corrosion resistance much superior to epoxy resin in aggressive environments. The corrosion studies were carried out on steel SPCC JISG 3141 plates coated with 5 wt % and without of TiO2 nanotubes (TNTs). | Vietnam Journal of Science and Technology 55 (5B) (2017) 203-209 CORROSION RESISTANCE AND MECHANICAL PROPERTIES OF TiO2 NANOTUBES / EPOXY COATING ON STEEL SPCC-JISG 3141 Duong Thi Hong Phan1, *, Dao Hung Cuong2, Le Minh Duc1 1 The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang, Da Nang, Viet Nam 2 The University of Danang, University of Education, 459 Ton Duc Thang, Da Nang, Viet Nam * Email: dthphan@ Received: 11 August 2017; Accepted for publication: 7 October 2017 ABSTRACT Titanium dioxide nanotubes (TNTs) have been considered the promising nanostructures employed for many practical applications such as biomedical, photonic and optoelectronic devices. Coatings prepared from epoxy-nano-TiO2 nanotubes synthesized by in situ polymerization were found to exhibit excellent corrosion resistance much superior to epoxy resin in aggressive environments. The corrosion studies were carried out on steel SPCC JISG 3141 plates coated with 5 wt % and without of TiO2 nanotubes (TNTs). The synthesis of titanium dioxide nanotubes (TNTs) using hydrothermal method was investigated. The synthesized TNTs were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) specific area surface test, X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) imaging. The results demonstrated a unique tubular nanostructure of TNTs shape. The mechanical performance of the nanocomposites was examined to show that the 5 wt % TNTs/epoxy coating was more impact resistance, the film hardness behavior and bending resistance than epoxy coating. The effects of TNT particles on corrosion resistance of epoxy coating were studied by salt spray test (Model SAM Y90) and compared to that of non-filler. After 144 h exposure, the corrosion resistance of epoxy resin greatly improved by using reinforcing the white pigment of TNTs. The results indicated that the coating containing TNTs shows the best protection .