tailieunhanh - Tóm tắt luận văn Thạc sĩ Kỹ thuật: Nghiên cứu ứng dụng luật kết hợp trong khai phá dữ liệu phục vụ quản lý vật tư, thiết bị trường Trung học phổ thông
Tóm tắt luận văn Thạc sĩ Kỹ thuật: Nghiên cứu ứng dụng luật kết hợp trong khai phá dữ liệu phục vụ quản lý vật tư, thiết bị trường Trung học phổ thông được xây dựng nhằm tạo ra kho dữ liệu có chiều sâu, thông tin để hỗ trợ cho việc ra quyết định phục vụ cho công tác quản lý thiết bị trường học dựa trên luật kết hợp. | BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC ĐÀ NẴNG LÊ NGỌC THIÊN NGHIÊN CỨU ỨNG DỤNG LUẬT KẾT HỢP TRONG KHAI PHÁ DỮ LIỆU PHỤC VỤ QUẢN LÝ VẬT TƯ, THIẾT BỊ TRƯỜNG TRUNG HỌC PHỔ THÔNG Chuyên ngành : Khoa học máy tính Mã số: TÓM TẮT LUẬN VĂN THẠC SĨ KỸ THUẬT Đà Nẵng - Năm 2013 Công trình được hoàn thành tại ĐẠI HỌC ĐÀ NẴNG Người hướng dẫn khoa học: . PHAN HUY KHÁNH Phản biện 1: TS. NGUYỄN THANH BÌNH Phản biện 2: TS. HOÀNG THỊ LAN GIAO Luận văn được bảo vệ tại Hội đồng chấm luận văn tốt nghiệp Thạc sĩ kỹ thuật họp tại Đại học Đà Nẵng vào ngày 12 tháng 10 năm 2013. * Có thể tìm hiểu luận văn tại: - Trung tâm Thông tin - Học liệu, Đại học Đà Nẵng 1 MỞ ĐẦU 1. Lý do chọn đề tài Trong những năm gần đây, cùng với sự phát triển mạnh mẽ của công nghệ thông tin đã làm cho khả năng thu thập và lưu trữ thông tin của hệ thống tăng lên một cách nhanh chóng. Bên cạnh đó việc tin học hóa các hoạt động trong lĩnh vực giáo dục, sản xuất kinh doanh cũng như các hoạt động xã hội khác đã tạo ra một lượng dữ liệu khổng lồ, theo như đánh giá cứ sau 20 tháng lượng thông tin trên thế giới lại tăng gấp đôi. Tốc độ dữ liệu quá lớn, dẫn đến kết quả là sự pha trộn của kỹ thuật thống kê và các công cụ quản trị dữ liệu không thể phân tích đầy đủ dữ liệu rộng lớn được nữa. Dữ liệu sau khi xử lý trực tuyến phục vụ cho mục đích nào đó được lưu lại trong kho dữ liệu và khối lượng dữ liệu được lưu trữ ngày càng lớn. Trong khối lượng to lớn này còn có nhiều thông tin có ích mang tính tổng quát, thông tin có tính qui luật vẫn còn đang tìm ẩn. Các công cụ Xử lý phân tích trực tuyến (Online Analytical Processing – OLAP) là cần thiết để phân tích dữ liệu, nhưng chưa đủ để rút thông tin từ một khối lượng dữ liệu khổng lồ như vậy. Từ đó dẫn đến một yêu cầu cấp thiết là cần có những kỹ thuật và công cụ mới để biến lượng dữ liệu khổng lồ kia thành các tri thức có ích. Một hướng tiếp cận mới có khả năng giúp nhà trường lấy được các thông tin có nhiều ý nghĩa từ tập dữ liệu lớn (databases, .
đang nạp các trang xem trước