tailieunhanh - Bài giảng Giải tích 2: Chương 3.1 - Nguyễn Thị Xuân Anh

Bài giảng Giải tích 2: Chương có nội dung trình bày về tham số hóa đường cong (đường cong trong mặt phẳng, đường cong trong không gian) và tích phân đường loại 1 (định nghĩa, tính chất). | CHƯƠNG III: TÍCH PHÂN ĐƯỜNG §1: THAM SỐ HÓA ĐƯỜNG CONG §2: TÍCH PHÂN ĐƯỜNG LOẠI 1 §3: TÍCH PHÂN ĐƯỜNG LOẠI 2 §1: Tham số hóa đường cong 1. Đường cong trong mặt phẳng: thường được cho bằng 2 cách Trường hợp đặc biệt: Có 2 trường hợp a. Cho bởi pt tham số b. Cho bởi pt y=y(x): Ta thường đặt x=t thì pt tham số sẽ là a. Viết phương trình tham số của đường tròn (x-a)2+(y-b)2=R2 ta sẽ đặt §1: Tham số hóa đường cong b. Viết phương trình tham số của đường ellipse 2. Đường cong trong không gian: thường được cho bằng 2 cách a. Được cho sẵn bởi phương trình tham số Ta sẽ đặt : §1: Tham số hóa đường cong b. Cho là giao tuyến của 2 mặt cong: Khi đó, thông thường ta sẽ đặt 1 trong 3 biến bằng t, thay vào 2 phương trình trên để được hpt với 2 pt và 2 ẩn là 2 biến còn lại. Giải hpt đó theo tham số t, ta sẽ ra 2 biến còn lại cũng tính theo t §1: Tham số hóa đường cong Ví dụ 1: Viết phương trình tham số đường cong C là giao tuyến của x2+y2=z2 và ax=y2 (z≥0) Ta đặt y=t thì Ví dụ 2: Viết phương trình tham số đường cong C là giao tuyến của x2=y và x=z (x≥0) Ta đặt x=t thì §1: Tham số hóa đường cong Tuy nhiên, trong một số trường hợp thông thường hay gặp, ta sẽ có cách tham số hóa từng đường cong cụ thể tùy vào những điểm đặc biệt của chúng Ví dụ 3: Viết pt tham số của 2 đường cong C1, C2 là giao tuyến của x2+y2+z2=2, z2=x2+y2 Ta có: Tức là C1, C2 vừa là giao tuyến của mặt cầu và mặt nón vừa là giao tuyến của mặt trụ với 2 mặt phẳng. Nói cách khác: C1, C2 là 2 đường tròn đơn vị nằm trên 2 mp đối xứng nhau qua mp z=0. §1: Tham số hóa đường cong Khi đó, ta đặt x=cost thì suy ra y=sint. Vậy pt tham số của C là §1: Tham số hóa đường cong Ví dụ 4: Viết phương trình tham số của đường cong C: x2+y2+z2=a2, x=y Thay x=y vào phương trình mặt cầu Ta được: 2x2+z2=a2 , là pt của đường ellipse. Tức là C là đường ellipse 2x2+z2=a2 trên mp x=y Đặt 2x2=a2cos2t thì suy ra z2=a2sin2t. Vậy ta được: §1: Tham số hóa đường cong Ví dụ 5: Viết phương trình tham số của đường cong C: x2+y2+z2=4 và x2+y2=2x lấy . | CHƯƠNG III: TÍCH PHÂN ĐƯỜNG §1: THAM SỐ HÓA ĐƯỜNG CONG §2: TÍCH PHÂN ĐƯỜNG LOẠI 1 §3: TÍCH PHÂN ĐƯỜNG LOẠI 2 §1: Tham số hóa đường cong 1. Đường cong trong mặt phẳng: thường được cho bằng 2 cách Trường hợp đặc biệt: Có 2 trường hợp a. Cho bởi pt tham số b. Cho bởi pt y=y(x): Ta thường đặt x=t thì pt tham số sẽ là a. Viết phương trình tham số của đường tròn (x-a)2+(y-b)2=R2 ta sẽ đặt §1: Tham số hóa đường cong b. Viết phương trình tham số của đường ellipse 2. Đường cong trong không gian: thường được cho bằng 2 cách a. Được cho sẵn bởi phương trình tham số Ta sẽ đặt : §1: Tham số hóa đường cong b. Cho là giao tuyến của 2 mặt cong: Khi đó, thông thường ta sẽ đặt 1 trong 3 biến bằng t, thay vào 2 phương trình trên để được hpt với 2 pt và 2 ẩn là 2 biến còn lại. Giải hpt đó theo tham số t, ta sẽ ra 2 biến còn lại cũng tính theo t §1: Tham số hóa đường cong Ví dụ 1: Viết phương trình tham số đường cong C là giao tuyến của x2+y2=z2 và ax=y2 (z≥0) Ta đặt y=t thì Ví dụ 2: Viết phương trình .

TỪ KHÓA LIÊN QUAN
crossorigin="anonymous">
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.