Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Đại số cơ bản: Bài 16 - PGS. TS Mỵ Vinh Quang
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Bài giảng bài 16 sẽ cung cấp cho người học những nội dung về vectơ riêng - giá trị riêng của ma trận; chéo hóa ma trận; vectơ riêng, giá trị riêng của phép biến đổi tuyến tính. | ĐẠI SỐ CƠ BẢN ÔN THI THẠC SĨ TOÁN HỌC Bài 16. Vectơ riêng - Giá trị riêng của ma trận và của phép biến đổi tuyến tính - Chéo hóa PGS TS Mỵ Vinh Quang Ngày 28 tháng 2 năm 2006 1 Vectơ riêng - Giá trị riêng của ma trận 1.1 Các khái niệm cơ bản Cho A là ma trận vuông cấp n A G Mn R 11 12 . 1n 21 22 2n . . . . n1 n2 nn Khi đó Đa thức bậc n của biến A 11 A 12 1n Pa A det A AI 21 . . . 22 A . . . 2n . . . n1 n2 nn A 1 nAn n-1An 1 1A1 0 gọi là đa thức đặc trưng của ma trận A. Các nghiệm thực của đa thức đa thức đặc trưng Pa A gọi là giá trị riêng của ma trận A. Nếu A0 là một giá trị riêng của A thì det A A0I 0. Do đó hệ phương trình thuần nhất A A0I x1 . . . Xn 0 . . . 0 1 1 có vô số nghiệm. Không gian nghiệm của hệ 1 gọi là không gian con riêng của ma trận A ứng với giá trị riêng Ao. Các vectơ khác không là nghiệm của hệ 1 gọi là các vectơ riêng của ma trận A ứng với giá trị riêng Ao. Các vectơ tạo thành một cơ sở của không gian riêng tức là các vectơ tạo thành hệ nghiệm cơ bản của hệ 1 gọi là các vectơ riêng độc lập tuyến tính ứng với giá trị riêng Ao. 1.2 Ví dụ Tìm đa thức đặc trưng vectơ riêng giá trị riêng của ma trận A 0 1 1 1 0 1 1 1 0 Giải -A 1 1 Ta có PaA 1 -A 1 -A3 3A 2 1 1 -A Vậy đa thức đặc trưng của ma trận A là Pa A A3 3A 2 Pa A 0 A3 3A 2 0 o A 1 2 2 - A 0 o A -1 kép A 2. Vậy ma trận A có 2 giá trị riêng là A -1 A 2. Để tìm vectơ riêng của A ta xét hai trường hợp Ứng với giá trị riêng A -1. Để tìm vectơ riêng ứng với giá trị riêng A -1 ta giải hệ 1 1 1 0 1 1 1 0 1 1 1 0 Hệ có vô số nghiệm phụ thuộc hai tham số x2 x3. Nghiệm tổng quát của hệ là x1 - a - b x2 a x3 b. Do đó không gian con riêng của A ứng với giá trị riêng A -1 là V_1 -a - b a b a b E R . Các vectơ riêng của A ứng với giá trị riêng A -1 là tất cả các vectơ có dạng -a - b a b với a2 b2 0 vì vectơ riêng phải khác không . Ta có dim V_1 2 và A có 2 vectơ riêng độc lập tuyến tính ứng với giá trị riêng A -1 là a1 -1 1 0 a2 -1 0 1 T Ứng với giá trị riêng A 2. Để tìm vectơ riêng ứng với giá trị riêng A