Đang chuẩn bị liên kết để tải về tài liệu:
A Course in Mathematical Statistics phần 7
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tham khảo tài liệu 'a course in mathematical statistics phần 7', ngoại ngữ, ngữ pháp tiếng anh phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 316 12 Point Estimation REMARK 7 We know see Remark 4 in Chapter 3 that if a p 1 then the Beta distribution becomes U 0 1 . In this case the corresponding Bayes estimate is . YL xi 1 ổ x1 . xn 1------- n 2 as follows from 21 . EXAMPLE 15 Let X1 . Xn be i.i.d. r.v. s from N e 1 . Take Ả to be N d 1 where d is known. Then I1 f x e --- f Xn e Ả e dd r_exp -1Y x - e 21 xp d Ide 1 12 Y JI 2 J . _1. exp -4Yx2 d Ì n 2 j h 2n L 2V1 1 J xf expj-1 n 1 e2 - 2 nx d e de. But n 1 e2 -2 nx d e n 1 e2 -2 n d el n 1 - 2 e - 2 nx -d e in- id n 1 V n 1 J 2 C d V n 1 Therefore n 1 2 e - n V n 1J 2 TT V n 1 J I 2 expl 1 2 n Y x2 d2 j 1 n 1 1 X2í n ĩ - exp 2 1 n nx d 2 1 vhĩ 2 V n 1 1 Jde 1 1 2 - 42n n expl 1 2 n Y x2 d2 j 1 nx d n 1 22 Exercises 317 Next 12 ef X1 e . f xn e Ả e de 1 n 1 n Oexp-1I x-e exP L 2 j 1 J e-p 2 de de 2 1 1 pny exp n 1 XT 2 - 2 Ixj p j 1 2 nx p 2 n 1 1 4ĩn 1 n 1 i ớexP - -- 1 2 1 4 1 2 e V n 1 y V de 1 1 n exPi 1 n - V Ĩ Vũ - ị 1 xỉ p 2 j 1 2 nx p 2 I nx p n 1 23 By means of 22 and 23 one has on account of 15 s x.r nx p x1 . . . xn v n 1 24 Exercises 12.7.1 Refer to Example 14 and i Determine the posterior p.d.f. h e x ii Construct a 100 1 - a Bayes confidence interval for e that is determine a set e e 0 1 fi e x c x where c x is determined by the requirement that the Prprobability of this set is equal to 1 - a iii Derive the Bayes estimate in 21 as the mean of the posterior p.d.f. h e x . Hint For simplicity assign equal probabilities to the two tails. 12.7.2 Refer to Example 15 and i Determine the posterior p.d.f. h e x ii Construct the equal-tail 100 1 - a Bayes confidence interval for e iii Derive the Bayes estimate in 24 as the mean of the posterior p.d.f. h e x . 318 12 Point Estimation 12.7.3 Let X be an r.v. distributed as P ớ and let the prior p.d.f. Ả of ớ be Negative Exponential with parameter T. Then on the basis of X i Determine the posterior p.d.f. h ớ x ii Construct the equal-tail 100 1 - a Bayes confidence interval for ớ iii Derive the Bayes .