Đang chuẩn bị liên kết để tải về tài liệu:
Control Systems - Part 7
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Trang này sẽ phục vụ như là một bồi dưỡng cho các ngành kỹ thuật khác nhau về cách thiết bị vật lý được mô phỏng. Mô hình sẽ được hiển thị ở cả hai miền thời gian và Laplace miền đầu vào / đầu ra đặc điểm. Thông tin duy nhất có nghĩa là sẽ được hiển thị ở đây sẽ là những người được đóng góp bởi các thành viên knowledgable. | Control Systems Print version - Wikibooks collection of open-content textbooks Page 164 of 209 Appendicies Appendix 1 Physical Models Appendix 2 Z-Transform Mappings Appendix 3 Transforms Appendix 4 System Representations Appendix 5 MatLab http en.wikibooks.org w index.php title ControlSystems Printversion printable yes 10 30 2006 Control Systems Print version - Wikibooks collection of open-content textbooks Page 165 of 209 Appendix Physical Models Physical Models This page will serve as a refresher for various different engineering disciplines on how physical devices are modeled. Models will be displayed in both time-domain and Laplace-domain input output characteristics. The only information that is going to be displayed here will be the ones that are contributed by knowledgable contributors. Electrical Systems Mechanical Systems Civil Construction Systems Chemical Systems http en.wikibooks.org w index.php title ControlSystems Printversion printable yes 10 30 2006 Control Systems Print version - Wikibooks collection of open-content textbooks Page 166 of 209 Appendix Z Transform Mappings Z Transform Mappings There are a number of different mappings that can be used to convert a system from the complex Laplace domain into the Z-Domain. None of these mappings are perfect and every mapping requires a specific starting condition and focuses on a specific aspect to reproduce faithfully. One such mapping that has already been discussed is the bilinear transform which along with prewarping can faithfully map the various regions in the s-plane into the corresponding regions in the z-plane. We will discuss some other potential mappings in this chapter and we will discuss the pros and cons of each. Bilinear Transform The Bilinear transform converts from the Z-domain to the complex W domain. The W domain is not the same as the Laplace domain although there are some similarities. Here are some of the similiarities between the Laplace domain and the W domain 1. Stable poles .