Đang chuẩn bị liên kết để tải về tài liệu:
fundamentals of heat and mass transfer solutions manual phần 2

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Giả định: (1) điều kiện ổn định, (2) Một chiều dẫn xuyên tâm, (3) Không có thế hệ thể tích nội bộ, (4) Các tài sản không đổi. Phân tích Đối với các khác biệt giữa kiểm soát khối lượng, bảo tồn năng lượng đòi hỏi qr = qr + dr điều kiện trạng thái ổn định, một chiều không có thế hệ nhiệt. Với pháp luật Fourier, | PROBLEM 3.34 KNOWN Hollow cylinder of thermal conductivity k inner and outer radii ri and ro respectively and length L. FIND Thermal resistance using the alternative conduction analysis method. SCHEMATIC ASSUMPTIONS 1 Steady-state conditions 2 One-dimensional radial conduction 3 No internal volumetric generation 4 Constant properties. ANALYSIS For the differential control volume energy conservation requires that qr qr dr for steady-state one-dimensional conditions with no heat generation. With Fourier s law qr -kAdT -k 2n rL dT 1 dr dr where A 2nrL is the area normal to the direction of heat transfer. Since qr is constant Eq. 1 may be separated and expressed in integral form -Sl. r dr - Tok T dT. 2 n L i r JTi Assuming k is constant the heat rate is _2tc Lk Tj - To qr ln ro ri . Remembering that the thermal resistance is defined as Rt AT q it follows that for the hollow cylinder Rt to Qp ri . t 2 T LK COMMENTS Compare the alternative method used in this analysis with the standard method employed in Section 3.3.1 to obtain the same result. PROBLEM 3.35 KNOWN Thickness and inner surface temperature of calcium silicate insulation on a steam pipe. Convection and radiation conditions at outer surface. FIND a Heat loss per unit pipe length for prescribed insulation thickness and outer surface temperature. b Heat loss and radial temperature distribution as a function of insulation thickness. SCHEMATIC hr2iĩr2 ASSUMPTIONS 1 Steady-state conditions 2 One-dimensional conduction 3 Constant properties. PROPERTIES Table A-3 Calcium Silicate T 645 K k 0.089 W m-K. ANALYSIS a From Eq. 3.27 with Ts 2 490 K the heat rate per unit length is 2nk Ts 1 - Ts 2 q _qr L_ ln r2 r1 _ 2n 0.089W m K 800-490 K ln 0.08m 0.06m q _ 603W m. b Performing an energy for a control surface around the outer surface of the insulation it follows that qcond qconv qrad Ts 1 - Ts 2 ln r2 r1 2nk Ts 2 Tro Ts 2 Tsur 1 2nr2h 1 2nr2hr 2 2 where hr EƠ Ts 2 Tsur Ts 2 Tsur . Solving this equation for Ts 2 the heat .