Đang chuẩn bị liên kết để tải về tài liệu:
Applied Structural Mechanics Fundamentals of Elasticity Part 10
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tham khảo tài liệu 'applied structural mechanics fundamentals of elasticity part 10', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 256 12 Membrane theory of shells The form of 4 suggests introduction of the sum and the difference of the unknown functions as new functions F1 O F F2 D-Y. 5 If we now divide 4 by sin jp 5 yields by addition and subtraction respectively of the two equations 4 Fi 2 1 2F1 2 Pl 2 0 with X12 2cot P1 2 pBa cosip 1 7 where the index 1 implies 4- and the index 2 implies - . The ordinary inhomogeneous differential equations of the first order with variable coefficients 6 have the following solutions according to 12.21 The integrals are evaluated by means of 7 Jxj dtp J 2cot p si y d tp 2 In sin p 4 In tan y A1 d p 2 In sino In tinu 2 . 2 _ V 1 e sin2 ỉp tan . In a similar way we determine tp tp IXdv cot2 -2 . p f 2 . tan 2 e _ . eJ sin p cot e J -. 777 - sin2 tp 2 sin3 qp For F we then obtain F -Ẻ Ỉ cos p 1 J sin ip tan cot 2 sin2 p By means of 1 I cos tp 2 cos3 2 2 w 2 v Sin 99 4 sin -F cos the integral can be determined as follows R 3 3 5Ì 0 cos sin 2 2 3 sin p dtp 1 1_ 3 - cos 4- -y- COS tp . 3 If we substitute 2 cos2 I cot ---------- 2 2 Sin COS 1 COS fp sin p Exercise C-12-3 257 we obtain from 9 Fl C1 PQa cos p - y cos3 tp 1 1 cos tp sin3 tp and analogously F2 ca - Po a cos tp - y cos3 tp 1 - cos tp sin3 p Substitution into 5 and solving leads after introduction of two new integration constants Dj Cj C2 and D2 C1 - C2 to y F f2 1 - 2 Dj Dj cos p 4- 2 Po a cos p cos tp - 4- cos3 O __1 _ sin3 qp 10 Y y F1- F2 2 d2 4- DjCostp 4- 2 Po a cos p -ycos3 p 1 sin qp In order to ensure finiteness of the resultant forces at the top p 0 we demand that D3 2p0a 0 . 11 Since sin3 p occurs in the denominator not only the numerator but also its first and second derivative have to vanish at the point p 0 . We obtain from the second equation 10 for the first derivative of the term in square brackets - Dj sin ip 1 2 Po a - sin cp cos2 p sin tp 0 y - 0 and for the second derivative - cos tp 4- 2 p0 a - cos tp - 2 cos tp sin fp 4- cos3 tp 0 . v 0 Whereas the first condition is .