Đang chuẩn bị liên kết để tải về tài liệu:
Môn học kinh tế lượng - Dạng hàm
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
DẠNG HÀM MỤC TIÊU 1. Mở rộng các dạng hàm 2. Hiểu ý nghĩa các hệ số hồi quy 2 .NỘI DUNG 1 2 Khái niệm biên tế, hệ số co giãn Giới thiệu các mô hình | CHƯƠNG 4 DẠNG HÀM 1. Mở rộng các dạng hàm 2. Hiểu ý nghĩa các hệ số hồi quy MỤC TIÊU DẠNG HÀM NỘI DUNG Khái niệm biên tế, hệ số co giãn 1 Giới thiệu các mô hình 2 Giả sử có hàm Y=f(X) Giá trị biên tế MXY =∆Y/∆X ∆Y= MXY * ∆X Ý nghĩa của biên tế: Cho biết lượng thay đổi tuyệt đối của biến phụ thuộc Y khi biến độc lập X thay đổi 1 đơn vị Khi ∆X->0, MXY ≈ f’(X) 4.1 BIÊN TẾ Hệ số co giãn của Y theo X là Lượng thay đổi tương đối của Y 4.1 HỆ SỐ CO GIÃN Ý nghĩa của hệ số co giãn: cho biết sự thay đổi tương đối (%) của Y khi X thay đổi 1% Khi ∆X->0 Hệ số co giãn không phụ thuộc đơn vị đo 4.1 HỆ SỐ CO GIÃN Mô hình hồi quy tổng thể Mô hình hồi quy mẫu ngẫu nhiên: 4.2 Mô hình hồi quy qua gốc tọa độ Mô hình hồi quy mũ Hay 4.3 Mô hình tuyến tính logarit (log-log) Ví dụ: Khi giá tăng 1% thì lượng cầu của loại hàng hoá này sẽ giảm 0,25%. 4.3 Mô hình tuyến tính logarit (log-log) 4.4.1. Mô hình log-lin Công thức tính lãi gộp Với r: tốc độ tăng trưởng gộp . | CHƯƠNG 4 DẠNG HÀM 1. Mở rộng các dạng hàm 2. Hiểu ý nghĩa các hệ số hồi quy MỤC TIÊU DẠNG HÀM NỘI DUNG Khái niệm biên tế, hệ số co giãn 1 Giới thiệu các mô hình 2 Giả sử có hàm Y=f(X) Giá trị biên tế MXY =∆Y/∆X ∆Y= MXY * ∆X Ý nghĩa của biên tế: Cho biết lượng thay đổi tuyệt đối của biến phụ thuộc Y khi biến độc lập X thay đổi 1 đơn vị Khi ∆X->0, MXY ≈ f’(X) 4.1 BIÊN TẾ Hệ số co giãn của Y theo X là Lượng thay đổi tương đối của Y 4.1 HỆ SỐ CO GIÃN Ý nghĩa của hệ số co giãn: cho biết sự thay đổi tương đối (%) của Y khi X thay đổi 1% Khi ∆X->0 Hệ số co giãn không phụ thuộc đơn vị đo 4.1 HỆ SỐ CO GIÃN Mô hình hồi quy tổng thể Mô hình hồi quy mẫu ngẫu nhiên: 4.2 Mô hình hồi quy qua gốc tọa độ Mô hình hồi quy mũ Hay 4.3 Mô hình tuyến tính logarit (log-log) Ví dụ: Khi giá tăng 1% thì lượng cầu của loại hàng hoá này sẽ giảm 0,25%. 4.3 Mô hình tuyến tính logarit (log-log) 4.4.1. Mô hình log-lin Công thức tính lãi gộp Với r: tốc độ tăng trưởng gộp theo thời gian của Y t: thời gian (tháng, quý, năm) 4.4 . Mô hình bán logarit Lấy logarit hai vế lnYt = lnY0 + t*ln(1+r) Hay lnYt = 1 + 2.t với lnY0= 1 và ln(1+r) = 2 Mô hình bán logarit có yếu tố ngẫu nhiên lnYt = 1 + 2.t + Ut 4.4.1. Mô hình log-lin Nhân thay đổi tương đối của Y lên 100. Nếu 2>0: tốc độ tăng trưởng (%) của Y đối với thay đổi tuyệt đối của t Nếu 2 4.4.1. Mô hình log-lin Ứng dụng: Nghiên cứu khảo sát tốc độ tăng trưởng (giảm sút) của các biến kinh tế vĩ mô như GDP, dân số, lao động, năng suất. Mô hình tuyến tính Yt = β1 + β2.t +Ut thích hợp với ước lượng thay đổi tuyệt đối của Y theo thời gian Mô hình log-lin thích hợp với ước lượng thay đổi tương đối của Y theo thời gian Ví dụ: Cho kết quả hồi quy tổng SP nội địa (RGDP) tính theo giá năm 1987 của Mỹ trong khoảng thời gian 1972-1991 GDP thực tăng với tốc độ 2,47%/năm