Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo tin học: "Generating function identities for ζ(2n + 2), ζ(2n + 3) via the WZ method"

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Generating function identities for ζ(2n + 2), ζ(2n + 3) via the WZ method. | Generating function identities for 2n 2 2n 3 via the WZ method Kh. Hessami Pilehrood and T. Hessami Pilehroody Mathematics Department Faculty of Science Shahrekord University Shahrekord P.O. Box 115 Iran Institute for Studies in Theoretical Physics and Mathematics IPM Tehran Iran hessamik@ipm.ir hessamit@ipm.ir Submitted Nov 25 2007 Accepted Feb 19 2008 Published Feb 29 2008 Mathematics Subject Classifications 11M06 05A10 05A15 05A19 Abstract Using WZ-pairs we present simpler proofs of Koecher Leshchiner and Bailey-Borwein-Bradley s identities for generating functions of the sequences 2n 2 n 0 and 2n 3 n 0. By the same method we give several new representations for these generating functions yielding faster convergent series for values of the Riemann zeta function. 1 Introduction The Riemann zeta function is defined by the series c s X i for Re s 1 n n 1 Apery s irrationality proof of c 3 and series acceleration formulae for the first values of the Riemann zeta function going back to Markov s work 8 1 c 2 3E i k 1 K k 5 _1 k 1 c 1 3 IX ựíỹ k 1 k k c 4 36 X_1_ c 17 u k4 2k k 1 k This research was in part supported by a grant from IPM No. 86110025 yThis research was in part supported by a grant from IPM No. 86110020 THE ELECTRONIC JOURNAL OF COMBINATORICS 15 2008 R35 1 stimulated intensive search of similar formulas for other values n n 5. Many Aperylike formulae have been proved with the help of generating function identities see 6 1 5 11 4 . M. Koecher 6 and independently Leshchiner 7 proved that y 2k 3 a2k y 1 y T 1 1 5 k2 a2 n 1 - n n2 a2 2 k3 2 k k2 a2 11 m2 k 0 n 1 7 k 1 k m 1 n 1 for any a 2 C with a 1. For even zeta values Leshchiner 7 in an expanded form showed that see 4 31 1 z X 1 - k 0 1 1 y 2 2k r 2k 2 a2k 1 y n 1 -1 n-1 n2 a2 k 1 1 k2 2k k 3k2 a2 k2 - a2 n 1 - X m m 1 x 7 2 for any complex a with a 1. Recently D. Bailey J. Borwein and D. Bradley 4 proved another formula y 2k 2 0 y 1 3 y .1 - TT m 4a2 Ì zL 2k 2 a zL n2 _ a2 6 2k k2 _ 2 H m2 _ a2 k 0 n 1