Đang chuẩn bị liên kết để tải về tài liệu:
Tóm tắt Luận án Tiến sĩ Toán học: Một số phương pháp gần đúng giải phương trình elliptic với các điều kiện biên hỗn hợp
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Mục đích của luận án nhằm nghiên cứu lời giải gần đúng bài toán biên của phương trình elliptic và phương trình song điều hòa với hệ số gián đoạn hoặc với điều kiện biên hỗn hợp mạnh. Để hiểu rõ hơn về đề tài, mời các bạn cùng tham khảo nội dung chi tiết luận án! | BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM VIỆN CÔNG NGHỆ THÔNG TIN TRƯƠNG HÀ HẢI MỘT SỐ PHƯƠNG PHÁP GẦN ĐÚNG GIẢI PHƯƠNG TRÌNH ELLIPTIC VỚI CÁC ĐIỀU KIỆN BIÊN HỖN HỢP Chuyên ngành Toán học tính toán Mã số 62.46.30.01 TÓM TẮT LUẬN ÁN TIẾN SĨ TOÁN HỌC Tập thể hướng dẫn khoa học 1. GS.TS Đặng Quang Á 2. TS. Vũ Vinh Quang HÀ NỘI - 2013 PHẦN MỞ ĐẦU 1. Tính cấp thiết của đề tài Nhiều bài toán vật lý và cơ học được mô hình hóa bởi các phương trình đạo hàm riêng. Vấn đề giải số hiệu qua phương trình đạo hàm riêng vẫn luôn là một trong những vấn đề được quan tâm nhất trong toán học tính toán đặc biệt khi hệ số không trơn gián đoạn trên một mặt phân cách nào đó hoặc điều kiện biên hỗn hợp mạnh cả hai điều kiện biên dạng Dirichlet và Neumann đều xuất hiện và chuyển đổi tại một hay nhiều điểm trên biên . Mặc dù đã có rất nhiều công trình nghiên cứu lời giải gần đúng cho các bài toán hệ số gián đoạn và điều kiện biên hỗn hợp mạnh bằng các phương pháp khác nhau đây vẫn là một vấn đề được các nhà khoa học quan tâm. Các lược đồ sai phân hữu hạn hay phần tử hữu hạn các phương pháp xấp xỉ biên . đều trở nên phức tạp hơn khi phải chú ý đến mặt gián đoạn hay sự chuyển đổi của các điều kiện biên. Mặt khác các cấu trúc của hệ phương trình đại số tuyến tính sẽ không còn đẹp đẽ như các trường hợp hệ số liên tục hay điều kiện biên đơn giản. Khi đó độ phức tạp của thuật toán tăng đáng kể. Trong khoảng 3 thập kỷ gần đây một hướng tiếp cận mới được các nhà khoa học đặc biệt quan tâm và có thể giải quyết tốt vấn đề giải số lớp bài toán biên hỗn hợp mạnh hay hệ số gián đoạn. Đó là phương pháp chia miền với ý tưởng chính là đưa bài toán phức tạp trên miền lớn về các bài toán đơn giản hơn trên các miền con và kết hợp với kỹ thuật lặp hiệu chỉnh để sau đó giải các bài toán con này bằng các phần mềm có sẵn. Đây chính là hướng nghiên cứu được lựa chọn để giải gần đúng một số lớp bài toán biên của phương trình elliptic. 2. Mục đích và phương pháp nghiên cứu Mục đích của luận