Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi chọn HSG cấp tỉnh lớp 9 THCS môn Toán năm 2013 - 2014 - Sở GD&ĐT Thanh Hóa

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Mời các em cùng tham khảo Đề thi chọn HSG cấp tỉnh lớp 9 THCS môn Toán năm 2013 - 2014 - Sở GD&ĐT Thanh Hóa nhằm giúp các bạn học sinh lớp 9 có thêm nhiều đề luyện tập, củng cố kiến thức, chuẩn bị sẵn sàng cho kỳ thi. Hy vọng giúp các em đạt kết quả tốt trong kỳ thi HSG. | SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH Năm học 2013 - 2014 ĐỀ THI CHÍNH THỨC Môn thi: TOÁN - Lớp 9 THCS Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 21/03/2014 (Đề thi có 01 trang, gồm 05 câu) Số báo danh Câu I (4,0 điểm): Cho biểu thức xy x xy x A x 1 1 : 1 x 1 . xy 1 1 xy xy 1 xy 1 1. Rút gọn biểu thức A. 2. Cho 1 1 6 . Tìm giá trị lớn nhất của A. x y Câu II (5,0 điểm). 1.Cho phương trình x 2 2 m 2 x m2 2m 4 0 . Tìm m để phương trình có hai nghiệm thực phân biệt x1 , x2 thỏa mãn x y z 1 2. Giải hệ phương trình 4 4 4 x y z xyz 2 1 1 . 2 x x2 x1 x2 15m 2 1 . Câu III (4,0 điểm). 1. Tìm tất cả các cặp số nguyên dương (a; b) sao cho (a + b 2) chia hết cho (a2b – 1). 2. Tìm x, y, z N thỏa mãn x 2 3 y z . Câu IV (6,0 điểm) : Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. 1. Chứng minh tam giác EMF là tam giác cân. 2. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng. 3. Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD. Câu V (1,0 điểm) : Cho x, y là các số thực dương thoả mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức B 3 1 3 1 . x y ----- HẾT ----- xy LỜI GIẢI Ở TRANG 3 Câu I (4,0đ) Ý 1 (2,5đ) Lời giải (vắn tắt) Điểm Điều kiện: xy 1 . A x 1 1 xy xy 1 xy 1 1 xy xy x xy 1 1 xy : xy x xy 1 x 1 1 xy xy 1 1 xy x 1 1 xy xy x xy 1 xy 1 1 xy xy 1 1 xy xy x xy 1 x 1 1 xy .